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Abstract:

The permeability barrier is required for terrestrial life and is localized to the stratum

corneum where extracellular lipid membranes inhibit water movement. The lipids that

comprise the extracellular matrix have a unique composition and are 50% ceramides,

25% cholesterol, and 15% free fatty acids. Essential fatty acid deficiency results in

abnormalities in stratum corneum structure function. The lipids are delivered to the

extracellular space by the secretion of lamellar bodies which contain phospholipids,

glucosylceramides, sphingomyelin, cholesterol, and enzymes. In the extracellular space

the lamellar body lipids are metabolized by enzymes to the lipids that form the lamellar

membranes. The lipids contained in the lamellar bodies are derived from both epidermal

lipid synthesis and extracutaneous sources. Inhibition of cholesterol, fatty acid, ceramide,

or glucosylceramide synthesis adversely affects lamellar body formation thereby

impairing barrier homeostasis. Studies have further shown that the elongation and

desaturation of fatty acids is also required for barrier homeostasis. The mechanisms that

mediate the uptake of extracutaneous lipids by the epidermis are unknown but

keratinocytes express LDL and SR-B1 receptors, fatty acid transport proteins, and CD36.

Topical application of physiologic lipids can improve permeability barrier homeostasis

and have been useful in the treatment of cutaneous disorders.

JLR: Dr Feingold what is the key function of the skin?

KF: The chief function of the skin is to form a barrier between the external hostile

environment and the internal milieu of the host (1). The skin must protect the host from

mechanical insults, UV light, chemicals, pathogenic microorganisms, etc. Most

importantly in order to survive in a terrestrial environment without desiccating, the skin

must provide a barrier to the loss of water and electrolytes (1). Without a permeability

barrier survival on land would be impossible. Severe burns abrogate these barrier
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properties and lead to an increased risk of infection and difficulties with maintaining fluid

and electrolyte balance. Similarly in premature infants the skin is not fully developed and

barrier function is impaired and therefore they also have great difficulties in maintaining

fluid and electrolyte balance (2, 3). More subtle functional abnormalities in skin barrier

function occur in neonates, in the elderly, and in association with several cutaneous

diseases including psoriasis and atopic dermatitis. (4-6).

JLR: Where in the skin are these barrier properties localized?

KF: The permeability barrier properties are primarily localized to the outer epidermal

layer, the stratum corneum (1). The stratum corneum consists of corneocytes,

keratinocytes that have undergone terminal differentiation, surrounded by a neutral lipid

enriched extracellular matrix. The mechanical strength of the skin is provided by the

corneocytes which are encased by a cornified envelope consisting of extensively crossed

linked proteins such as involucrin and loricrin. The hydrophobic extracellular lipid matrix

provides the barrier to the movement of water and electrolytes (1).

JLR: What lipids are in this extracellular matrix?

KF: The lipids that comprise the extracellular matrix of the stratum corneum have a

unique composition and are very different than the lipids that comprise most biological

membranes. On a total lipid mass basis, human stratum corneum is 50% ceramides, 25%

cholesterol, and 15% free fatty acids (7). Very little phospholipid is present in the stratum

corneum, which is markedly different from what is observed in most other membranes.

The specific ceramides present in the stratum corneum are unusual and very diverse.

Walter Holleran and colleagues will discuss the origin and importance of this diversity in

detail in a review in this series. However, it should be noted that linoleate is present in the

acylceramides and that in essential fatty acid deficiency oleate replaces linoleate resulting

in marked abnormalities in cutaneous permeability barrier function associated with an

abnormal appearance of the extracellular lipid membranes (8-11). These observations

indicate that essential fatty acids are required for the normal structure and permeability

barrier function of the stratum corneum. The free fatty acids in human stratum corneum

are predominantly straight chained with 22 and 24 carbon chain lengths being the most
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abundant (7). While cholesterol is the major sterol in stratum corneum, cholesterol sulfate

is a minor sterol metabolite that plays a key role in regulating desquamation (this will be

discussed in detail by Peter Elias and colleagues in another review in this series) (12, 13).

The synthesis of cholesterol sulfate in the epidermis is catalyzed by the enzyme

cholesterol sulfotransferase. Cholesterol sulfotransferase activity increases with

keratinocyte differentiation and recent studies have shown that SULT2B1b is the isoform

that accounts for the cholesterol sulfotransferase activity in the epidermis (14-16). For

information on the organization of lipids in the stratum corneum a recent review by

Bouwstra and Ponec provides a comprehensive state of the art update (17)

JLR: How are the lipids delivered to the extracellular spaces of the stratum

corneum?

KF: The lipid is secreted from keratinocytes in lamellar bodies, which are ovoid, 0.2 x

0.3 micrometer, membrane bilayer encircled secretory organelles that are unique to the

epidermis (18). These lamellar bodies are not present in the undifferentiated basal layer

of the epidermis, but they begin to appear as keratinocytes differentiate and are first

observed in the upper stratum spinosum layer of the epidermis with increasing numbers

found in the stratum granulosum (18). These lamellar bodies contain phospholipids,

glucosylceramides, sphingomyelin, and cholesterol (18). In addition, numerous enzymes

including lipid hydrolases such as beta glucocerebrosidase, acidic sphingomyelinase,

secretory phospholipase A2, and neutral lipases, and proteases such as chemotryptic

enzymes (kallikreins) and cathepsins are localized to lamellar bodies (18). Moreover,

recent studies have shown that antimicrobial peptides, such as human beta defensin 2 and

the cathelicidin, LL-37, are also present in lamellar bodies (18).

JLR: Do the lipids in the extracellular lipid membranes in the stratum corneum

differ from the lipids packaged into lamellar bodies?

KF: Yes. The lipids in the lamellar bodies are precursors of the stratum corneum

extracellular lipids. Following secretion these lamellar body derived lipids are further

metabolized in the stratum corneum extracellular spaces by enzymes that are co-secreted

in lamellar bodies (18-22). Specifically, beta glucocerebrosidase converts
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glucosylceramides into ceramides (23, 24), acidic sphingomyelinase converts

sphingomyelin into ceramides (25, 26), and phospholipases convert phospholipids into

free fatty acids and glycerol (27, 28). Both Gaucher’s disease, due to a deficiency in beta

glucocerebrosidase, and Niemann Pick disease, due to a deficiency in acidic

sphingomyelinase, leads to defects in the extracellular lipid membranes and abnormal

permeability barrier function due to the impaired conversion of lipid precursors into

ceramides (23, 26). Walter Holleran and colleagues will discuss in greater detail the

extracellular processing of sphingolipids in the stratum corneum in their review. Of note,

disruption of the permeability barrier produces an increase in beta glucocerebrosidase

activity and mRNA levels in the epidermis (29). Similarly, disruption of the permeability

barrier also increases acidic sphingomylinase activity in the epidermis (25). Thus the

activity of the two key enzymes that are required for the extracellular metabolism of

lamellar body lipids to the lipid species that form the lamellar membranes is enhanced

following permeability barrier disruption. Additionally, inhibition of PLA2 activity,

which blocks the conversion of phospholipids to free fatty acids, also leads to defects in

the structure of the extracellular lipid membranes and permeability barrier homeostasis

(27, 28). There are several different isoforms of PLA2 expressed in the epidermis and

which specific isoforms are important for the extracellular catabolism of phospholipids to

fatty acids in the stratum corneum remains to be determined (30, 31). Finally the

cholesterol sulfate in the stratum corneum is metabolized by the lamellar body derived

enzyme, steroid sulfatase, to cholesterol (see the review by Peter Elias and colleagues for

a detailed discussion of the important role of the steroid sulfatase mediated breakdown of

cholesterol sulfate in regulating corneocyte desquamation) (32).

JLR: Does this extracellular processing of lipids have other important effects in

addition to providing the lipids required for the formation of the extracellular lipid

membranes that mediate permeability barrier function?

KF: Yes. In fact a number of key stratum corneum functions are derived in part from this

extracellular processing of lipids. The glycerol that is formed by the breakdown of

phospholipids by phospholipases plays a role in the stratum corneum as a water holding

agent, which helps to keep the stratum corneum hydrated. Hydration is crucial for a
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smooth and flexible skin, and changes in hydration status signal several downstream

responses including epidermal DNA synthesis and catabolism of filaggrin into

deiminated carboxylic acid metabolites (33-37).

The free fatty acids that are formed by phospholipid breakdown contribute to the

acidification of the stratum corneum (38, 39). The pH of the outer stratum corneum and

skin surface in humans and animals ranges from 5-5.5 (40). This acidic environment is

very important as it regulates the activity of many of the enzymes in the stratum corneum

(40). For example the activity of both beta glucocerebrosidase and acidic

sphingomyelinase are optimal at or below pH 5.5, which is very similar to the pH of the

stratum corneum. Conversely, many of the proteases in the stratum corneum have a pH

optimum of 7 or higher and therefore their activity is decreased at the usual stratum

corneum pH of 5.5. If the pH of the stratum corneum is increased, the activity of beta

glucocerebrosidase and acidic sphingomyelinase is reduced and the extracellular

processing of glucosylceramides and sphingomyelins to ceramides is impaired leading to

abnormalities in the structure of the extracellular lipid membranes and decreased

permeability barrier function (4, 41-43). Furthermore, elevations in stratum corneum pH

stimulate protease activity resulting in increased corneocyte desquamation (4, 41, 42). In

newborns the pH of the stratum corneum is increased which could explain the decreased

permeability barrier homeostasis and epidermal fragility that is observed during the

neonatal period (4). Similarly, many cutaneous inflammatory disorders also are

associated with increases in stratum corneum pH, which could adversely affect enzyme

activity in the stratum corneum resulting in a decrease in permeability barrier function

and stratum corneum integrity and cohesion (40) . Finally, the breakdown of cholesterol

sulfate to cholesterol by the enzyme steriod sulfatase plays an important role in regulating

desquamation (12, 13, 32). Steroid sulfatase deficiency results in recessive X-linked

ichthyosis, which will be discussed in detail in the review by Peter Elias and colleagues

(12, 13, 32). Additionally, cholesterol sulfate stimulates keratinocyte differentiation,

adversely effects permeability barrier function, and inhibits cholesterol synthesis and

HMG CoA reductase activity in keratinocytes (44-48).
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JLR: Is anything known about how lamellar bodies are formed?

KF: The structural proteins that comprise the lamellar bodies have not yet been identified

and the details of lamellar body formation are not well understood. The incorporation of

the lipid hydrolases and proteases into lamellar bodies requires the prior or concurrent

delivery of lipid to the lamellar bodies (49). If lipids are deficient the enzymes that are

characteristically found in lamellar bodies are not transported from the Golgi to the

lamellar bodies (49). Recent studies have shown that ABCA12, a member of the ABC

family of transporters, is required for lamellar body formation (50, 51). Mutations in

ABCA12 result in the failure to form normal lamellar bodies and extracellular lipid

membranes (50, 51). Severe mutations in ABCA12 are associated with Harlequins

ichthyosis, a disease that is often fatal in childhood, while milder partial loss of function

mutations in ABCA12 are associated with a less severe phenotype of lamellar ichthyosis

type 2 (these disorders will be discussed in greater detail in the review by Peter Elias and

coworkers) (50-54).

JLR: What regulates lamellar body secretion?

KF: Acute disruption of the permeability barrier by mechanical forces (i.e. sequential

tape stripping), solvents (i.e. acetone), or detergents (i.e. SDS) initiates a homeostatic

repair response that results in the rapid recovery of permeability barrier function (55, 56).

The first step in this repair response is the rapid secretion (within minutes) of the contents

of the lamellar bodies from the outer stratum granulosum cells, resulting in a marked

decrease in the number of lamellar bodies in stratum granulosum cells (50-80% of pre-

existing lamellar bodies are secreted) (57). Newly formed lamellar bodies begin to

reappear in the stratum granulosum cells and accelerated secretion continues until

permeability barrier function returns towards normal (57). If one artificially restores

permeability barrier function to normal by application of an impermeable membrane, one

can inhibit the further secretion of lamellar bodies (57).

JLR: How do the stratum granulosum cells know that the permeability barrier is

disturbed and that it is time to secrete lamellar bodies and initiate the homeostatic

repair program?
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KF: Within the epidermis there is a calcium gradient with high levels of extracellular

calcium in the upper epidermis surrounding the stratum granulosum cells (58, 59).

Immediately following barrier disruption the increased water movement through the

compromised stratum corneum carries calcium outward towards the skin surface resulting

in a reduction in the calcium concentration surrounding the stratum granulosum cells (60-

62). This change in calcium concentration appears to be the primary signal inducing

lamellar body secretion. If one prevents the reduction in calcium levels by providing

exogenous calcium, lamellar body secretion does not occur and permeability barrier

repair is not initiated (60-62). Conversely if one lowers the calcium surrounding the

stratum granulosum cells without disrupting the permeability barrier by either

iontophoresis or sonophoresis, lamellar body secretion is stimulated (63, 64). It is likely

that potassium and other ions also play a role in this signaling process (65-67). In

addition, other non-ionic signals generated in the stratum corneum and by keratinocytes

may also influence the repair response (for review see (68)). For example, cytokines such

as IL-1 alpha are stored in high concentrations in the stratum corneum and are rapidly

released following barrier disruption (69-71). Mice deficient in IL-1, IL-6, and TNF

alpha signaling have a delay in permeability barrier repair following acute barrier

disruption, indicating a role for these cytokines in regulating permeability barrier

homeostasis (25, 72, 73).

JLR: Where do the lipids in the lamellar bodies come from? For example what is

the source of lamellar body cholesterol?

KF: The epidermis on a weight basis is a very active site of cholesterol synthesis (74).

Moreover, following acute barrier disruption there is a rapid and marked increase in

epidermal cholesterol synthesis (75). The increase in cholesterol synthesis is associated

with an increase in the activity, protein, and mRNA levels of HMG CoA reductase, a key

enzyme in the cholesterol biosynthetic pathway (76-78). Furthermore, after acute barrier

disruption a marked increase in the percentage of HMG CoA reductase in the active

dephosphorylated form is observed (77). Increased enzyme activation is observed as early

as 15 min following acute permeability barrier disruption and the degree of disruption

required to activate the enzyme is less than that required to increase enzyme mass. The
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increase in HMG CoA reductase activity occurs in both the upper and lower epidermis

(79). Additionally, mRNA levels of other key enzymes in the cholesterol synthetic

pathway, including HMG CoA synthase, farnesyl diphosphate synthase, and squalene

synthase, also increase following acute barrier disruption (80). Preliminary studies by our

laboratory have suggested that the active forms of SREBP-1 and 2 increase following

barrier disruption, which could explain the concordant increase in the enzymes of the

cholesterol synthetic pathway. Evidence that disruption of the permeability barrier signals

the increase in cholesterol synthesis is demonstrated by experiments where an artificial

permeability barrier is provided by occlusion with an impermeable membrane. Under

these conditions the increase in epidermal cholesterol synthesis and the increase in

mRNA levels of the cholesterol synthetic enzymes are inhibited (75, 77, 80). Most

importantly if one inhibits the increase in epidermal cholesterol synthesis by topical

application of statins, which inhibit HMG CoA reductase activity and decrease

cholesterol synthesis, the recovery of permeability barrier function is delayed (81). The

initial wave of lamellar body secretion occurs, but the reappearance of lamellar bodies is

delayed and those organelles that do appear have an abnormal internal structure. These

abnormalities can be reversed by topical treatment with either cholesterol, the final

product of the synthetic pathway, or mevalonate, the product formed by HMG CoA

reductase, indicating that these defects are not due to non-specific effects of topical

application of statins (81). Of note mice with a deficiency of 3 beta-hydroxysterol-delta

24, the enzyme that catalyzes the conversion of desmosterol to cholesterol, have abundant

desmosterol but no cholesterol in the epidermis. These animals die within a few hours

after birth due to an impaired cutaneous permeability providing additional evidence for

the importance of cholesterol for normal permeability barrier function (82). Together,

these results demonstrate an important role for epidermal cholesterol synthesis in

permeability barrier homeostasis.

JLR: Is fatty acid synthesis in the epidermis also important for barrier repair?

KF: The epidermis is also a very active site of fatty acid synthesis and disruption of the

permeability barrier results in a rapid and marked increase in fatty acid synthesis (74, 83).

Barrier disruption increases the activity and mRNA levels of both of the key enzymes
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required for de novo fatty acid synthesis, acetyl CoA carboxylase and fatty acid synthase

(80, 84). The increase in acetyl CoA carboxylase and fatty acid synthase induced by

permeability barrier disruption is likely due to an increase in the activation of SREBPs.

Once again, occlusion with an impermeable membrane that restores permeability barrier

function prevents the increase in fatty acid synthesis and the increase in expression of

acetyl CoA carboxylase and fatty acid synthase (80, 83, 84). Moreover, following acute

barrier disruption, inhibition of fatty acid synthesis by the topical application of the acetyl

CoA carboxylase inhibitor, 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), delays the

recovery of permeability barrier function (85). The initial wave of lamellar body

secretion occurs normally, but the ability of the epidermis to synthesis new lamellar

bodies is impaired and those lamellar bodies that are formed display abnormal lamellar

membranes. These abnormalities in barrier repair and lamellar body formation can be

reversed by topical treatment with free fatty acids, indicating that these defects are not

due to the non-specific effects of TOFA (85). These results demonstrate an important role

for epidermal de novo fatty acid synthesis in permeability barrier homeostasis.

JLR: Is there any evidence that the elongation of fatty acids is important for

permeability barrier homeostasis?

KF: Relatively few studies have examined this issue and the effect of permeability barrier

disruption on the expression of the enzymes involved in the elongation of fatty acids has

not yet been examined. Of note animals deficient in ELOVL4 (elongation of very long

chain fatty acid-4) have a severely compromised permeability barrier and die shortly after

birth (86-89). These animals have deficient lamellar body contents and a paucity of

lamellar membranes in the stratum corneum, which would account for the permeability

barrier abnormality (89). Lipid analysis revealed a global deficiency of very long chain

fatty acids in the epidermis and the absence of omega-O-acylceramides that are key

components of the extracellular lipid membranes of the stratum corneum (see the review

of Walter Holleran and colleagues for additional information regarding the role of

specific ceramides in permeability barrier homeostasis) (87-89). These observations

demonstrate the importance of ELOVL4 in generating at least one of the lipids required

for normal permeability barrier homeostasis. ELOV3 KO mice also have a defective
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permeability barrier and abnormalities in stratum corneum structure but since this

enzyme is predominantly expressed in sebaceous glands and has only minimal expression

in keratinocytes it is currently hypothesized that the defects in stratum corneum structure

and function are secondary effects (90).

JLR: Is desaturation of fatty acids important for permeability barrier homeostasis?

KF: The effects of permeability barrier disruption on the expression of enzymes that

desaturate fatty acids have not been examined. Studies have shown that animals that are

deficient in SCD2 (stearoyl-CoA desaturase 2) have a defective permeability barrier and

many die soon after birth (91). The barrier defect is associated with a decrease in lamellar

body contents and a decrease in lamellar membranes in the stratum corneum (91). In the

SCD2 deficient mice the content of linoleic acid in the acylceramide fraction was

markedly reduced with increased linoleic acid in phospholipids suggesting alterations in

the partitioning of linoleic acid (91). Given the important role of acylceramides in

permeability barrier function the reduction of acylceramides containing linoleic acid

could account for the observed barrier abnormalities. Of note is that approximately 30%

of the animals survive and in these animals SCD1 appears to compensate for the absence

of SCD2 (91). However, in animals deficient in SCD1 (asebia mice) there are no

abnormalities in permeability barrier homeostasis (SCD1 deficient mice have a sebaceous

gland defect that will be discussed in Diane Thiboutot’s review in this series) (92). The

absence of defects in permeability barrier function in asebia mice who have marked

abnormalities in sebaceous glands and the presence of normal permeability barrier

function in areas of human skin with a paucity of sebaceous glands indicates that the

lipids produced by sebaceous glands are not essential for permeability barrier

homeostasis (92, 93). However, stratum corneum hydration is decreased in asebia mice

who are deficient in sebaceous glands and in areas of human skin with a decreased

number of sebaceous glands (92, 93). The triglycerides in sebaceous lipids are

metabolized by lipases to free fatty acids and glycerol and a decrease in glycerol in areas

with reduced sebaceous gland activity leads to a decrease in stratum corneum hydration

(92, 93).

 by on June 13, 2008 
w

w
w

.jlr.org
D

ow
nloaded from

 

http://www.jlr.org
Thierry
Highlight

Thierry
Highlight

Thierry
Highlight

Thierry
Highlight

Thierry
Highlight

Thierry
Highlight

Thierry
Note
(enzymes)



12

JLR: Are there fatty acid binding proteins in keratinocytes?

KF: Yes. Epidermal fatty acid binding protein (E-FABP) is expressed in keratinocytes

(E-FABP has also been called C-FABP in rats, MAL 1 in mice, and PA-FABP in

humans) (94-97). The amount of E-FABP increases with keratinocyte differentiation and

immunohistochemistry studies have demonstrated that the intensity of staining is greatest

in the upper epidermis (96, 98, 99). The expression of brain, liver, and heart FABP is not

usually detected in the epidermis (100, 101). Acute disruption of the permeability barrier

induces E-FABP expression and this increase can be prevented by covering with a vapor

permeable membrane (102). Additionally, inflammatory disorders including psoriasis are

associated with increased E-FABP levels in the epidermis (95, 97, 98). In animals

deficient in E-FABP basal transepidermal water loss is lower than wild type animals

indicating better barrier function (100, 101) . Following acute barrier disruption the return

of barrier function to normal follows very similar kinetics as observed in wild type

animals indicating that a deficiency in E-FABP does not markedly impair normal

permeability barrier homeostasis (100, 101). Of note though is that heart FABP is

expressed in the epidermis of E-FABP knock out mice (usually not detectable in wild

type mice) and it is possible that this increase in heart FABP compensates for the absence

of E-FABP (100, 101).

JLR: The fatty acids produced in the epidermis will serve as precursors for both

phospholipids and ceramides. What is known about the synthesis of phospholipids

in the epidermis?

KF: Although phospholipids are essential constituents of lamellar bodies little is known

about the regulation of the enzymes of phospholipid synthesis in the epidermis. Recent

studies in our laboratory have focused on several of the enzymes involved in

phospholipid synthesis (103). AGPAT (1-acyl-sn-glycerol-3-phosphate acyltransferase)

catalyzes the acylation of lysophosphatidic acid to form phosphatidic acid, the major

precursor of all glycerolipids. The expression pattern of AGPAT isoforms is unique with

relatively high constitutive expression of AGPAT 3, 4, and 5 but low constitutive

expression of AGPAT 1 and 2 in murine epidermis (103). Localization studies indicated
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that all five isoforms of AGPAT were expressed in all nucleated layers of the epidermis

(103). Moreover, acute permeability barrier disruption rapidly increased AGPAT 1, 2,

and 3 mRNA levels and the increase was sustained for at least 24 hours (103). In parallel

with the increase in mRNA levels, an increase in AGPAT activity also occurred (103).

Additionally, the increase in AGPAT expression could be partially reversed by artificial

barrier restoration by occlusion with an impermeable membrane indicating that the

expression of AGPATs is linked to permeability barrier requirements (103). In contrast,

mGPAT (mitochondrial sn-glycerol-3-phosphate acyltransferase) expression did not

change after permeability barrier disruption (103).

JLR: Are there other pathways of fatty acid metabolism that play a role in

permeability barrier function?

KF: The LOX (lipoxygenase) pathway in the epidermis plays a role in epidermal

differentiation and hence permeability barrier function (104). Mutations in either 12R-

LOX or eLOX-3 are associated with autosomal recessive congenital ichthyosis (these

disorders will be discussed in detail in the review by Peter Elias) (105-107). Both 12R-

LOX and eLOX-3 are localized to the differentiated stratum granulosum layer of the

epidermis and convert arachidonic acid to hepoxilin- and trioxilin-like compounds that

are believed to play a role in regulating keratinocyte differentiation (105, 108-111).

Moreover, very recent studies have shown that the creation of 12R-lipoxygenase deficient

mice results in a severe impairment in barrier function with the mice dying soon after

birth from a defective barrier (108). Abnormalities were not observed in the extracellular

lipid lamellar membranes that mediate barrier function and the levels of total fatty acids,

cholesterol, and ceramides were not different than wild type mice (108). However, in the

protein bound ceramide fraction that is covalently bound to the cornified envelope, there

were alterations in the distribution of ceramide species, which might account for the

permeability barrier abnormality (108). How metabolites of the LOX pathway are linked

with epidermal differentiation and permeability barrier formation remains to be

elucidated.
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JLR: What is known about the role of permeability barrier function in regulating

ceramide synthesis in the epidermis?

KF: Acute barrier disruption stimulates sphingolipid synthesis in the epidermis and this

increase in synthesis occurs in both the lower and upper epidermal layers (112, 113).

However, in contrast to cholesterol and fatty acid synthesis, the increase in sphingolipid

synthesis is delayed first occurring 6 hours after barrier disruption (112). Additionally,

the activity and mRNA levels of serine palmitoyl transferase, the first enzyme in the

sphingolipid pathway, increase following barrier disruption (80, 112, 113). Occlusion

with an impermeable membrane can inhibit the increase in sphingolipid synthesis and the

increased expression of serine palmitoyl transferase demonstrating the link with

permeability barrier function (112, 113). Most importantly, the topical application of

beta-chloro-L-alanine, an inhibitor of serine-palmitoyltransferase activity, slowed

permeability barrier recovery at the late time points and reduced the number of lamellar

bodies in stratum granulosum cells and sphingolipids in the stratum corneum (114). This

inhibition was over-ridden by co-applications of ceramides indicating that the delay in

repair was not due to non-specific toxicity of beta-chloro-L-alanine (114). These studies

demonstrate a key role for epidermal ceramide synthesis in latter phase of permeability

barrier repair.

JLR: Are these ceramides modified?

KF: As noted earlier, glucosylceramides are the key ceramide constituent of lamellar

bodies. Glucosylceramides are synthesized from ceramides by the enzyme,

glucosylceramide synthase (UDP-glucose: ceramide glucosyltransferase). Under basal

conditions, glucosylceramide synthase activity is localized predominantly in the outer

epidermis (115, 116). Surprisingly disruption of the permeability does not alter

glucosylceramide synthase activity (115). However, topical treatment with an inhibitor of

glucosylceramide synthase activity, P4 (d, 1-threo-1-phenyl-2-hexadecanoylamino-3-

pyrrolidino-1-propanol), delays barrier recovery following acute disruption (115). These

results demonstrate that glucosylceramides are essential for permeability barrier

homeostasis but that baseline epidermal glucosylceramide synthase activity appears

sufficient to accommodate acute challenges to the barrier. Recent studies have confirmed
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the importance of glucosylceramide synthase for permeability barrier homeostasis. Mice

with an epidermal specific deficiency of glucosylceramide synthase have marked

abnormalities in permeability barrier function and die soon after birth (117). Not

unexpectedly they have abnormalities in both lamellar body and stratum corneum

structure (117).

JLR: Is triglyceride synthesis important for permeability barrier function?

KF: Triglycerides are synthesized in the epidermis but their role in permeability barrier

homeostasis is poorly defined. DGAT2 is expressed in the epidermis while the expression

of DGAT1 is barely detectable (118). DGAT2 KO mice have abnormalities in

permeability barrier function, which contributes to their demise soon after birth (118).

The number of lamellar bodies is normal but the internal content of the lamellar bodies

and the quantity of lamellar membranes in the extracellular space of the stratum corneum

is greatly reduced (118). However, it is unclear whether these abnormalities in cutaneous

function are due to the absence of DGAT2 in the epidermis. When the skin of DGAT2

mice was transplanted to normal mice epidermal permeability barrier function normalized

suggesting that the defects in permeability barrier function were not simply due to the

absence of DGAT2 in the epidermis (118).

JLR: Are there any clinical abnormalities that occur secondary to decreased lipid

synthesis in the epidermis?

KF: In the elderly, permeability barrier function, measured by transepidermal water loss,

is normal or even better than normal at baseline (5). However, following acute

permeability barrier disruption both aged mice and humans (>75 years of age) have a

delay in permeability barrier recover associated with a decrease in lamellar body

secretion and extracellular lipids in the stratum corneum (5). A decrease in both

cholesterol synthesis and the activity of HMG CoA reductase was seen in the aged

animals in the basal state and the usual stimulation of cholesterol synthesis and HMG

CoA reductase activity that is induced by acute permeability barrier disruption was

blunted (119). Moreover, topical treatment with either cholesterol or mevalonate

markedly improved permeability barrier homeostasis in aged animals (119, 120). These
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results demonstrate that aging results in a decrease in epidermal cholesterol synthesis,

which negatively impacts permeability barrier homeostasis.

Additionally, treatment with either topical or systemic glucocorticoids decrease

epidermal lipid synthesis resulting in abnormalities is permeability barrier homeostasis

(121). A decrease in cholesterol, fatty acid, and ceramide synthesis was seen in the

epidermis of animals treated with glucocorticoids and in human keratinocyte cultures

incubated with glucocorticoids (121). The abnormality in permeability barrier

homeostasis induced by glucocorticoids was corrected by topical treatment with a

mixture of stratum corneum lipids (121). It should be recognized that glucocorticoid

levels may be increased due to a variety of different circumstances and hence many

different and diverse clinical conditions could result in decreases in epidermal lipid

synthesis and abnormalities in permeability barrier homeostasis. For example, it has been

shown that psychological stress in both mice and humans results in impaired permeability

barrier homeostasis (122-125). Studies have further shown that in psychologically

stressed animals epidermal lipid synthesis is decreased leading to decreased lamellar

body formation (126). These abnormalities could be prevented by inhibiting either

glucocorticoid action with RU 486 or glucocorticoid production with antalarmin, a CRH

receptor antagonist (127). Additionally, the abnormalities in permeability barrier

homeostasis in psychologically stressed animals could be improved by treatment with

topical lipids (126).

JLR: Are the relative quantities of the key lipids important?

KF: It is clear that cholesterol, ceramides, and fatty acids are required for the formation

of lamellar bodies in keratinocytes. When one topically applies a lipid mixture containing

equimolar concentrations of all three essential lipids, permeability barrier recovery

following acute disruption is normal (128-130). In contrast, topical application of any one

or two of the three key lipids to acutely perturbed skin actually results in a delay in

permeability barrier repair associated with abnormal appearing lamellar bodies (128-

130). Both complete and incomplete mixtures of the three key lipids rapidly transverse

the stratum corneum and are taken up by stratum granulosum cells thereby markedly

altering the molar distribution of lipids leading to abnormalities in the formation of
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lamellar bodies (128-130). Along similar lines, chronic topical treatment with statins also

results in abnormalities in lamellar body structure and permeability barrier homeostasis

(57, 131). However, this is not due to a deficiency in cholesterol content as cholesterol

synthesis is normal due to the marked up-regulation of HMG CoA reductase (131).

Rather fatty acid synthesis is also markedly stimulated, which leads to an excess of fatty

acids that alters the structure of lamellar bodies (57, 131). Thus, in order to synthesize

lamellar bodies the key lipids must be present in appropriate distributions and an excess

or deficiency of a particular lipid can disturb lamellar body formation.

JLR: Are extracutaneous derived lipids important for permeability barrier

homeostasis?

KF: A number of lines of evidence suggest that extracutaneous lipids make a significant

contribution to maintaining permeability barrier homeostasis. First, in the inhibitor

experiments described above, despite a marked inhibition of lipid synthesis (for example

topical statin treatment acutely inhibited cholesterol synthesis by greater than 90%), the

inhibition of permeability barrier recovery is relatively modest (81, 85, 114). This

discrepancy suggests that alternative sources of lipid are available for the formation of

lamellar bodies and the regeneration of stratum corneum lipid membranes. Second,

studies in humans and animals have shown systemically administered labeled cholesterol

and fatty acids are delivered to the epidermis (75, 83, 132, 133). Third, essential fatty

acids are present in the stratum corneum in large quantities and are required for the

maintenance of a competent barrier (8-11). By definition these essential fatty acids are

only obtained from dietary sources. Fourth, plant sterols, which are of dietary origin, are

present on the skin surface (132, 134, 135) . Fifth, the epidermis lacks delta 6 and delta 5

desaturase activity and therefore must obtain arachidonic acid from extra epidermal sites

(136, 137). Sixth, plant derived fatty acids accumulate in the epidermis in certain disease

states, such as Refsum’s disease (138). Lastly, studies have shown that adding

glucosylceramides to the diet can improve permeability barrier function (139). Taken

together these observations indicate that extracutaneous sources contribute to the

epidermal lipid pool but the precise contribution has not been determined.
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JLR: Are lipoprotein receptors present on keratinocytes?

KF: Undifferentiated keratinocytes in culture have LDL receptors but with differentiation

the LDL receptors are no longer present on the plasma membranes of keratinocytes (140-

142). In agreement with the in vitro studies, in vivo studies have demonstrated that LDL

receptors are present only on the basal cells of normal murine and human epidermis i.e.

undifferentiated cells (143, 144). However, in hyperplastic disorders with associated

permeability barrier abnormalities, such as essential fatty acid deficiency or psoriasis,

LDL receptors are expressed in the more differentiated stratum spinosum and stratum

granulosum (144). Moreover, acute permeability barrier disruption induces an increase in

LDL receptor mRNA and protein levels in the epidermis and this increase can be

inhibited by occlusion with an impermeable membrane that restores permeability barrier

function (76). In unpublished studies we have not observed a defect in permeability

barrier homeostasis in LDL receptor knockout mice indicating that the LDL receptor is

not essential for the formation and maintenance of a normal permeability barrier. The

other lipoprotein receptor expressed in keratinocytes is SR-B1. SR-B1 is present in

cultured human keratinocytes and calcium-induced differentiation markedly decreases

SR-B1 levels (145). SR-B1 mRNA is also expressed in murine epidermis and SR-B1

mRNA levels increase by 50% following acute barrier disruption (145). Additionally,

using immunofluorescence we demonstrated that SR-B1 is present in human epidermis

predominantly in the basal layer and increases following barrier disruption (145). The

increase is completely blocked by occlusion with an impermeable membrane indicating

that the increase in epidermal SR-B1 expression is regulated by permeability barrier

requirements (145). The precise role of SR-B1 in permeability barrier homeostasis

remains to be determined. SR-B1 could facilitate the uptake of cholesterol from HDL

particles.

JLR: Are the apolipoproteins that interact with lipoprotein receptors produced in

the epidermis?

KF: The best studied is apolipoprotein E. Studies have shown that apolipoprotein E is

synthesized by keratinocytes in culture and in vivo in the epidermis (76, 146, 147). In fact

human epidermal skin grafts transplanted onto mice results in the appearance of human
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apolipoprotein E in the serum demonstrating that the production of apolipoprotein E in

the skin may result in the systemic delivery of apolipoprotein E (148). The expression of

apolipoprotein E in the epidermis is specified by a unique 1.0 kb enhancer domain

located 1.7 kb downstream of the apolipoprotein E gene (149). Deletion of this enhancer

resulted in the lack of expression of apolipoprotein E in the epidermis. Epidermal

apolipoprotein E mRNA levels are increased approximately 2 fold following acute

disruption of the permeability barrier (76). In unpublished studies we have not noted any

alteration in permeability barrier homeostasis in apolipoprotein E knock out mice. In

addition to apolipoprotein E, studies have shown that apolipoprotein A-II and serum

amyloid A, a protein that can associate with HDL, are made by epidermal cells (150,

151). Of note is that apolipoprotein A-I is made by chicken and carp epidermis but does

not appear to be made in mammalian epidermis (152, 153). The role of these

apolipoproteins in epidermal biology remains to be determined. One can speculate that

they could play a role in the movement of lipids between cells in the epidermis. The outer

epidermal stratum granulosum cells require large quantities of lipids for lamellar body

formation and the lower epidermal basal cells synthesize and take up lipids from the

circulation. The apolipoproteins and lipoprotein receptors could facilitate the movement

of lipid between epidermal cells. In support of this concept are studies demonstrating that

LCAT (lecithin/cholesterol acyltransferase) is made by the basal cells of the epidermis

(154). LCAT mediates the conversion of cholesterol to cholesterol esters in lipoprotein

particles, which allows for the efficient removal of cholesterol from cells. In addition

recent studies by our laboratory have shown that ABCA1 is made in both the upper and

lower epidermis and acute disruption of the permeability barrier results in the down

regulation of ABCA1 expression in both the upper and lower epidermis (155). This

decrease in ABCA1 may reflect a reduction in free cellular cholesterol and a decrease in

the conversion of cholesterol to oxysterols, activators of LXR. Similar to other cells,

ABCA1 expression is stimulated by LXR activators in keratinocytes and an increase in

cellular cholesterol activates LXR while a decrease in cellular cholesterol decreases the

activation of LXR (155).

JLR: Are transporters for the uptake of fatty acids present in the epidermis?
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KF: In cultured keratinocytes studies have shown that fatty acid uptake is mediated by a

transport system that is temperature sensitive, has saturable kinetics, and is decreased by

trypsin treatment (156, 157). Additionally, fatty acid uptake in keratinocytes

demonstrated a higher specificity for linoleic and arachidonic acid than for oleic acid

indicating a preference for fatty acids that must be obtained from extra epidermal sources

(157). Recent studies by our and other laboratories have shown that FATP 1, 3, 4, and 6

(fatty acid transport protein) along with CD 36 (FAT- fatty acid transporter) are

expressed in murine epidermis (158-160). Following permeability barrier disruption there

was an increase in FATP 1 and 6 and CD36 (158, 160). Additionally, studies have shown

that permeability barrier disruption increases CD36 mRNA levels and this increase can

be blocked by occlusion with an impermeable membrane (158). Of note is that mice with

spontaneous mutations in FATP4 or certain targeted disruptions of FATP4 display a

restrictive dermopathy and a markedly defective permeability barrier function, which

leads to death soon after birth (161, 162). Notably transgenic mice that overexpress

FATP4 only in the epidermis can rescue mice with a spontaneous mutation in FATP4

(163). This result together with the results seen with a targeted disruption of FATP4

indicate that it is the absence of FATP4 in the epidermis that causes the phenotypic

changes and not alterations in fatty acid metabolism in other tissues. Additionally, studies

in mice with a temporally controlled disruption of FATP4 in the epidermis have

demonstrated a cutaneous phenotype with defective permeability barrier function but the

phenotype was not anywhere near as severe as that seen in neonates (164). The

explanation for the milder phenotype in adult animals could be due to compensation by

other FATPs. As noted above, studies have shown in adult mice that several FATPs are

present in the epidermis including FATP 1, 3, 4, and 6 (160). However, studies of

embryonic expression at day 18.5 revealed that FATP1 was not expressed in epidermis

while the expression of FATP4 was relatively increased compared to the expression in

adult epidermis (160). Thus it is possible that newborn animals are more susceptible to

the absence of FATP4 whereas in adult mice the other FATPs can partially compensate

for the deficiency of FATP4. In contrast CD36 knockout mice and humans with a

deficiency of CD36 do not have an apparent skin phenotype (165, 166). These studies

demonstrate the potentially important role of fatty acid transporters in the epidermis.   
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JLR: Earlier you pointed out that the stratum corneum is comprised of corneocytes

and extracellular lipids. Is the formation of these two compartments coordinated?

KF: As readers of the JLR know very well there are a variety of cellular sensors that

monitor intracellular lipid levels and regulate the expression of genes. Several nuclear

hormone liposensors including PPAR alpha, PPAR beta/delta, PPAR gamma, and LXR

alpha and beta are expressed in keratinocytes (167-169). Studies by our laboratory and

others have shown that activation of PPARs and LXRs have major effects on

epidermal/keratinocyte function. First, the addition of PPAR/LXR ligands to cultured

human keratinocytes and the topical application of PPAR/LXR ligands to murine skin

results in the increased expression of keratinocyte differentiation related proteins, such as

involucrin, loricrin, profilaggrin, and transglutaminase 1, which would stimulate

cornified envelope formation (167, 170-177). Second, PPAR/LXR ligands are anti-

inflammatory, decreasing the inflammation seen in response to TPA treatment, a model

of irritant contact dermatitis (176-179). Third, PPAR/LXR ligands increase cholesterol

sulfotransferase activity, which would increase the synthesis of cholesterol sulfate (180).

Finally, topical treatment of murine skin with PPAR/LXR ligands improves permeability

barrier homeostasis, resulting in an acceleration of barrier recovery following acute

disruption (174-177). Associated with this improvement in permeability barrier

homeostasis is an increase in a) epidermal cholesterol, fatty acid, and sphingolipid

synthesis, b) lamellar body number and secretion, and c) beta-glucocerebrosidase

activity, all of which could contribute to the enhanced barrier homeostasis (181, 182).

Furthermore, recent studies have shown that PPAR/LXR activation increases the

expression of ABCA12, a transporter required for the transport of lipids into lamellar

bodies (183). Thus we would postulate that as the lipids that are required for the

formation of lamellar bodies accumulate in keratinocytes the increase in fatty acids and

their metabolites would activate PPARs and the increase in oxidized cholesterol would

activate LXRs. The activation of these nuclear hormone receptors would in turn stimulate

the expression of genes required for corneocyte formation (for example involucrin,

loricrin, filaggrin, and transglutaminase 1). In addition, activation of these nuclear

hormone receptors would also stimulate the formation and packaging of lipids required
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for the formation of the extracellular lipid membranes. Thus, activation of PPARs and

LXRs could provide a mechanism to coordinate the formation of the corneocytes and

extracellular lipid membranes that comprise the stratum corneum.

JLR: Can one use topical lipids to improve permeability barrier homeostasis in

damaged or diseased skin?

KF: Yes. Treatment with topical lipids can be divided into two approaches. First, one can

use non-physiological lipids such as petrolatum (i.e. Vaseline), lanolin, beeswax, etc.

These lipids do not enter the lamellar body secretory pathway but rather fill the

extracellular spaces of the stratum corneum with hydrophobic non-lamellar lipid that

inhibits the movement of water and electrolytes (184). Treatment with these non-

physiological lipids can very rapidly, but only partially restore permeability barrier

function towards normal (185). A disadvantage of non-physiological lipids is that they

also can inhibit the normal permeability barrier repair mechanisms and thus the

underlying abnormality is not corrected (185). The second approach is to use lipids or

precursors of the lipids that are normally present in lamellar bodies. Studies have shown

that appropriate molar mixes of lipids that contain cholesterol, ceramides, and fatty acids

can improve permeability barrier homeostasis (128-130). In contrast to non-physiologic

lipids, these lipids are transported across the stratum corneum into the stratum

granulosum cells where they mix with the endogenous pool of lipids (128-130). Hence it

is important that the appropriate mixture of lipid be used, because as noted above if

incomplete or misbalanced mixtures of lipids are used, lamellar body contents are altered

and permeability barrier homeostasis can be negatively impacted (128-130, 185).

In certain disease or developmental states, where a particular lipid class is decreased, a

mixture of physiologic lipids in which the missing lipid is dominant is most beneficial.

For example in aged animals, where cholesterol synthesis is decreased to a greater degree

than other lipid classes, studies have shown that topical treatment with cholesterol alone

or cholesterol-dominant lipid mixtures improves permeability homeostasis while fatty

acid dominant mixtures actually impede permeability barrier homeostasis (120).

Similarly in atopic dermatitis a ceramide dominant mixture is beneficial (186). One

disadvantage of the use of physiological lipid mixtures is that in clinical conditions where
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the lamellar body secretory system is malfunctioning (for example following UV or x-

irradiation or in very premature infants) physiological lipids cannot be incorporated into

lamellar bodies, and therefore they cannot accelerate the movement of lipids to the

extracellular spaces of the stratum corneum (26, 187-190). In some circumstances a

mixture of physiologic and non-physiologic lipids may be ideal, because the action of

physiologic lipids is delayed, while non-physiologic lipids, such as petrolatum, provide

an immediate partial restoration of the barrier.

JLR: Dr Feingold any closing thoughts?

KF: So often in biology and medicine we focus on the harmful effects of lipids, such as

atherosclerosis and obesity. However, with regards to the epidermis they provide the

crucial ingredients that allow us to form a permeability barrier to the movement of water

and electrolytes through the stratum corneum. While I have tried to discuss some of what

is known about the role of lipids in the formation of this complex stratum corneum

lamellar membrane that mediates permeability barrier function it should be obvious to the

reader that much work remains to be done to fully understand the formation and

regulation of the epidermal permeability barrier.
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